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Abstract
We present a detailed comparison between ONETEP, our linear-scaling density
functional method, and the conventional pseudopotential plane wave approach
in order to demonstrate its high accuracy. Further comparison with all-
electron calculations shows that only the largest available Gaussian basis sets
can match the accuracy of routine ONETEP calculations. Results indicate that
our minimization procedure is not ill conditioned and that convergence to
self-consistency is achieved efficiently. Finally, we present calculations with
ONETEP, on systems of about 1000 atoms, of electronic, structural and chemical
properties of a wide variety of materials such as metallic and semiconducting
carbon nanotubes, crystalline silicon and a protein complex.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The formalism of Kohn–Sham density functional theory (DFT) [1, 2] for electronic structure
calculations has become established as an approach that provides a good description of
electronic correlation while keeping the size of calculations tractable. Nevertheless, the
computational time taken by a conventional DFT calculation increases with the cube of the
number of atoms. This scaling limits the size of problems that can be tackled to a few hundred
atoms at most. As a consequence, many exciting problems which lie at the interface between the
microscopic and mesoscopic worlds, particularly in the fields of biophysics and nanoscience,
are out of the reach of DFT calculations. Progress towards the goal of bringing the predictive
power of DFT to bear on these problems can be made only by developing approaches for DFT
calculations that have linear-scaling or O(N) instead of cubic-scaling computational cost.
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Even though there have been numerous theoretical developments, so far linear-scaling
methods have not lived up to their early promise. Linear-scaling approaches are still described
as ‘experimental’ [3] and so far there are few examples of successful application to problems
of interest in materials or biological sciences [4]. For a review see [5, 6]. Our ONETEP linear-
scaling method for DFT calculations allows for the systematic control of both truncation errors
and variational freedom in the basis set. For full details, including demonstration of the linear-
scaling behaviour, see [7] and references therein. Here we demonstrate that ONETEP can be
used to solve real problems with the same level of confidence and general applicability as
conventional cubic-scaling DFT approaches.

In section 2 we begin with a brief presentation of the formalism for linear-scaling DFT
on which ONETEP is based. In section 3 we compare ONETEP with conventional well established
cubic-scaling methods with emphasis on the case of systematic improvement in the basis set,
and hence in accuracy, and in the speed of self-consistent convergence. In section 4 we show
how ONETEP can be used to explore a range of materials with thousands of atoms ranging from
nanostructures to bulk solids to biomolecules. Finally, in section 5 we present our conclusions.

2. Overview of theory

Kohn–Sham DFT enables the problem of many interacting electrons in a static external potential
to be mapped onto a fictitious system of non-interacting particles. Self-consistent solution of
the resulting set of single-particle Schrödinger equations gives the ground-state energy and
density of the original interacting problem. All the information about the ground state of the
system is contained in the single-particle density matrix ρ(r, r′) which, provided there is a
bandgap in the material, decays exponentially [8–12] as a function of the distance between
r′ and r. This property can be exploited to truncate the density matrix so that the amount
of information it contains increases only linearly with the number of atoms. To perform this
truncation in a practical way, the density matrix is expressed as

ρ(r, r′) =
∑

αβ

φα(r)K αβφ∗
β(r′) (1)

where the {φα} are a set of spatially localized, non-orthogonal generalized Wannier functions
(NGWFs) [13] and the matrix K is called the density kernel [14]. K can be made sparse by
enforcing the condition K αβ = 0 when |Rα − Rβ | > rcut, where Rα and Rβ are the centres of
the localization regions of NGWFs φα(r) and φβ(r), respectively.

ONETEP belongs to the category of methods that aim for high accuracy by optimizing
the energy self-consistently not only with respect to K but also with respect to the
NGWFs [15–20]. In ONETEP the NGWFs are expanded in a basis set of periodic cardinal sine
(psinc) functions [13, 21],also known as Dirichlet or Fourier Lagrange-mesh functions [22, 23].
Each psinc function is centred on a particular point of a regular real-space grid. Figure 1
shows how this property is used to impose localization on the NGWFs within predefined
spherical regions and [24] describes in detail our methodology for the computation of each
term (including the Hartree potential) in the total energy with O(N) cost.

3. Basis set convergence

Since the computational cost of a DFT calculation increases with the size of the basis set it
is important to be able to converge calculated properties to the desired accuracy using the
smallest possible basis set. The most convenient way to achieve this is to improve the basis
set systematically. For instance, the quality of a plane wave basis [25] is increased via a single
parameter, the kinetic energy cut-off. At the other end of the spectrum are atomic orbital (AO)
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Figure 1. Imposing localization on an NGWF (φα). The NGWF is expanded only in the psinc
functions whose centres fall inside its localization sphere.

basis sets which do not span space in a uniform manner and whose systematic refinement is
not straightforward. An AO basis is defined by a number of independent features, such as
the number of functions per atom, and their radial and angular shapes. Furthermore, unlike
plane waves, AO basis sets are not orthogonal and consequently the undesired effect of linear
dependence can often hinder efforts to improve their quality. Nevertheless, numerous careful
attempts have been made to construct series of atomic basis sets which demonstrate systematic
improvement to varying degrees [26–29]. Particular attention has been paid to Gaussian [30]
functions where the series of even-tempered [31] and correlation-consistent [32] basis sets are
amongst the best known cases of AO bases with systematic behaviour. In ONETEP our psinc basis
is constructed from plane waves in such a way that it fully retains their desirable properties of
orthogonality and systematicity whilst being localized.

It is important to note that the set of plane waves which constitute the psinc functions is
different from that in a typical plane wave calculation. The relation between the two is clarified
in figure 2. The psinc basis set is constructed from plane waves eiG·r with wavevectors G
belonging to a cube of side-length 2Gupper in reciprocal space. On the other hand, conventional

Geqv

Glower

Gupper

Figure 2. The psinc basis of ONETEP is constructed from a cube of wavevectors. Conventional plane
wave approaches such as CASTEP define their plane wave basis from a sphere of wavevectors. Three
choices of such spheres that could be used to compare ONETEP and CASTEP calculations are shown.
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Figure 3. The molecular structure of the formaldehyde–water hydrogen bonded complex used in
our tests (not equilibrium geometry).

plane wave approaches [25] such as the CASTEP code [33] construct their basis from a sphere of
G vectors. Therefore, to compare ONETEP calculations with a code such as CASTEP, we need to
decide first on the most appropriate sphere of wavevectors. Figure 2 shows some choices for
the radius of this sphere: Gupper (sphere inscribed in cube, the CASTEP basis is a subset of the
ONETEP basis), Geqv (sphere has equal volume with cube, ONETEP and CASTEP basis sets have an
equal number of functions with most of them in common) and Glower (sphere circumscribes
the cube, the CASTEP basis is a superset of the ONETEP basis).

In order to examine the strengths and weaknesses of ONETEP compared to conventional
plane wave and AO approaches we have carried out a series of tests on the hydrogen bond in
the formaldehyde–water complex shown in figure 3. This is a rather sensitive test as hydrogen
bonds are amongst the weakest and longest chemical bonds,yet they are very important because
they are commonly encountered as major contributors to the structural stability and function
of most biological macromolecules such as proteins, DNA and sugars [34]. For the purpose of
comparison we have used the local density approximation (LDA) [35, 36] exchange–correlation
(XC) functional.

Table 1 shows the binding energies we obtained from calculations with CASTEP for the
three kinetic energy cut-offs in figure 2. Also shown is the total energy of the bound
complex. The core electrons in these calculations were replaced by norm-conserving
pseudopotentials [37–39]. Periodic boundary conditions were used and the molecule was
placed in a very large cubic simulation cell (30 Å × 30 Å × 30 Å) to ensure that the supercell
approximation [25] holds extremely well.

The corresponding ONETEP results are shown in table 2 for the same periodic simulation
cell, pseudopotentials and LDA XC functional. A total of 16 NGWFs were used for the
hydrogen bonded complex, one on each H atom and four on each C and O atom. We have
performed calculations for a wide range of NGWF localization sphere radii rloc and we observe
that the binding energy agrees with the converged CASTEP value4 to 1 meV, for rloc as small as
3.7 Å. The total energy converges rapidly from above as a function of rloc, as expected for a
basis set variational method [40]. We note that, once we are converged with respect to rloc,
the ONETEP result lies between the CASTEP bounds shown in table 1 and, as one would expect,
agrees closely with the 935 eV cut-off result (Geqv sphere in figure 2). From here on we define
the psinc kinetic energy cut-off to be the kinetic energy cut-off of the plane wave sphere with
the same volume as the cube of our psinc basis.

Table 2 also shows the number of self-consistency iterations taken to converge the total
energy, and we make the observation that this is independent of the localization region
radius rloc, which demonstrates that our method does not suffer from the ‘superposition ill
conditioning’ described in [41].

To complete our comparison we present in table 3 calculations with the AO approach as
implemented in the NWChem [42] quantum chemistry program which uses Gaussian basis
sets and a closely related formula [35, 50] for the LDA XC functional. In this approach the

4 One kcal mol−1 is equal to 43.36 meV.
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Table 1. Calculations on the formaldehyde–water complex with CASTEP, [33].

Kinetic energy Total energy Binding energy
cut-off (eV) (eV/atom) (meV)

608 (∝G2
upper) −154.444 145

935 (∝G2
eqv) −155.044 149

1823 (∝G2
lower) −155.082 148

Table 2. Calculations on the formaldehyde–water complex with ONETEP [7].

Number of Total energy Binding energy
rloc (Å) iterations (eV/atom) (meV)

2.6 13 −154.789 168
3.2 13 −154.890 155
3.7 11 −154.914 150
4.2 11 −154.921 148
4.8 12 −154.924 148

Table 3. Calculations on the formaldehyde–water complex with NWChem [42] using Gaussian
basis sets of increasing size.

Number Binding energy Counterpoise-corrected
Basis name of AOs (meV) binding energy (meV)

STO-3G [43] 19 91 39
3-21G [44] 35 186 92
6-31G [45] 35 171 128
6-31+G∗ [46, 47] 65 159 143
6-31++G∗∗ [46, 47] 81 162 147
cc-pVDZ & diffuse [48, 49] 111 153 146
cc-pVTZ [48] 165 157 133
cc-pVTZ & diffuse [48, 49] 265 149 147
cc-pVQZ [48] 350 151 140
cc-pVQZ & diffuse [48, 49] 535 148 147

core electrons are treated explicitly and the molecules are virtually isolated in space as the
calculations are done with open boundary conditions. The total number of AOs (contracted
Gaussian functions) for the whole formaldehyde–water complex for each basis set is also
shown in table 3.

From table 3 we observe that the convergence of the total energy of the complex is neither
uniform nor rapid, as a consequence of the fact that the different features, e.g., diffuse functions
etc, introduced to the basis set affect the energy to different extents. We also note that the size
of the basis set required to reach the same level of accuracy as ONETEP is very large. The
calculations with the Gaussian basis set suffer from basis set superposition error (BSSE) and
thus in table 3 we also give a column with binding energies calculated with the counterpoise
correction method of Boys and Bernardi [51]. This costly correction procedure significantly
improves the binding energies obtained with the medium sized basis sets (6-31+G∗ and 6-
31++G∗∗).
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4. Nanostructures, crystals and biomolecules

In this section we present several examples of calculations on systems with around 1000
atoms. Materials and molecules with this number of atoms are usually beyond the capabilities
of conventional cubic-scaling approaches.

4.1. Nanostructures: carbon nanotubes

Carbon nanotubes are at the centre of many nanotechnology applications because of their
unique electronic and mechanical properties [52]. From a structural point of view nanotubes
are seamless cylinders of graphene, which can be either semiconducting or metallic. A method
such as ONETEP where linear scaling is achieved by taking advantage of the exponential decay of
the density matrix present in insulators is not expected to be efficient on metallic systems where
the decay is only algebraic [11]. Metallic systems therefore present a significant challenge and
carbon nanotubes are an ideal test case that can provide us with insight into how switching
from a non-metallic to a metallic system (while keeping all other factors essentially unchanged)
affects calculations where density matrix truncation is applied. We have studied segments of
metallic (10, 10) armchair and semiconducting (20, 0) zigzag carbon nanotubes [52, 53].

The (10, 10) nanotube segments are constructed by repeating identical units of 40 atoms
while the (20, 0) segments are made of units of 80 atoms. For the (10, 10) nanotube we
performed ONETEP calculations on segments consisting of 8, 15, 16, 30 and 32 units ranging
from 320 to 1280 atoms. For the (20, 0) nanotube we used segments of 8 and 16 units with
640 and 1280 atoms respectively. As our nanotube segments were made of repeated identical
units we were able to perform with CASTEP calculations equivalent to ONETEP by using only a
single unit but equivalent Brillouin zone sampling. The same LDA [35, 36] XC functional
and pseudopotential were used by both codes. The plane wave kinetic energy cut-off of CASTEP

was set to 410 eV as was the psinc kinetic energy cut-off of ONETEP. In the ONETEP calculations
the radii rloc of the carbon NGWF localization spheres were 3.3 Å. The nanotube segments
were placed in orthorhombic simulation cells with their axis aligned with the z-axis. The
dimensions of the cells along the x- and y-axes were 30 Å × 30 Å. These simulation cells
ensured negligible interaction of the nanotubes with their periodic images as the diameter of
the (10, 10) tubes is just 13.6 Å and that of the (20, 0) tubes is 15.6 Å. In order to perform a
detailed comparison of the results between the two codes we diagonalized the converged ONETEP

Hamiltonian in the NGWF representation and obtained canonical molecular orbitals. From
these we constructed the density of states (DOS) by smearing with Gaussians with a halfwidth
of 0.1 eV. Our results are shown in figure 4. The two codes give virtually identical DOS in the
important regions of 1 eV below and above the Fermi level and very close agreement in the
region below −1 eV. In the region above 1 eV the agreement deteriorates rapidly. This is not
surprising as the NGWFs of ONETEP are specifically optimized to describe the density matrix
which is composed of occupied bands and no emphasis is placed on the description of the
conduction bands. It is still remarkable that the low-lying conduction band DOS is calculated
correctly with ONETEP.

As we make our (10, 10) nanotube segments longer, we increase the number of closely
spaced k-points from the metallic band structure of the nanotube that we fold into our equivalent
� point description of the band structure and the density matrix. We have found that as the
number of segments increases it becomes more and more difficult to impose a finite density
kernel cut-off threshold rcut in ONETEP while maintaining any degree of accuracy. With the
30- and 32-unit segments an infinite rcut becomes essential in order to obtain useful results. In
contrast, the (20, 0) nanotube remains amenable to density kernel truncation as the length of
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Figure 4. Top panel: the density of states (DOS) of a 30-unit segment of a (10, 10) metallic
nanotube as calculated with ONETEP and CASTEP. On the right the ONETEP (30 Å × 30 Å × 73.30 Å)

and CASTEP (30 Å ×30 Å ×2.44 Å) simulation cells are shown. Bottom panel: the density of states
(DOS) of a 16-unit segment of a (20, 0) semiconducting nanotube as calculated with ONETEP and
CASTEP. On the right the ONETEP (30 Å × 30 Å × 67.78 Å) and CASTEP (30 Å × 30 Å × 4.24 Å)

simulation cells are shown.

its segments is increased. For example, in figure 4 we show the DOS for the 16 unit segment
generated with rcut = ∞ and with rcut = 15.9 Å and the two curves essentially coincide. Our
observations are thus consistent with expected behaviour regarding the decay of the density
matrix in metallic and non-metallic systems at zero temperature.

ONETEP calculations with rcut = ∞, while not linear scaling, are still perfectly feasible. In
particular, most computationally intensive steps such as the construction of the Hamiltonian
matrix in the NGWF representation, the construction of the electronic charge density and the
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calculation of the derivatives of the NGWFs with respect to the expansion coefficients in the
psinc basis depend only on the NGWF localization sphere radii rloc and are always perfectly
linear scaling independently of the value of rcut . The only step that stops being linear scaling
when the density kernel K is no longer sparse is the optimization of K which is carried out by
using variants of the Li–Nunes–Vanderbilt [54] method and Haynes’ [55] penalty functional
method which involve matrix multiplications.

It is also worth noting that unlike conventional plane wave approaches where the memory
and computation grows with the entire volume of the simulation cell without distinction
between vacuum and atomic regions, ONETEP uses algorithms [24, 56] which avoid computation
and storage in vacuum regions, thus making possible calculations in very large simulation cells
as in this section.

4.2. Solids: crystalline silicon

Here we examine properties of pure crystalline silicon as calculated by ONETEP and CASTEP.
For these calculations we have used the LDA with a norm-conserving pseudopotential and
plane wave and psinc kinetic energy cut-offs of 283 eV. A cubic unit cell of 1000 atoms was
used in the ONETEP calculations and a cubic unit cell of eight atoms was used in the CASTEP

calculations, with an equivalent 5 × 5 × 5 k-point mesh. The two cells are shown in figure 5.
We should note that in a code like CASTEP there are two ways to define the basis set while
varying the energy with respect to the lattice parameter. One can either keep the kinetic energy
cut-off Ecut constant or keep the number of plane wave basis functions NPW constant. The
latter approach is conceptually closer to the way the ONETEP calculations are performed in
these cases as it is the number of psinc functions that is kept constant, which is equivalent
to keeping constant the number of plane waves in the cube of figure 2. Furthermore, in the
ONETEP calculations, when varying the lattice parameter, it is important to scale rloc and rcut

Figure 5. Periodic crystalline silicon. Left: the eight-atom cubic simulation cell used in the
calculations with CASTEP. Right: the 1000-atom cubic simulation cell used in the calculations with
ONETEP.
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Figure 6. The total energy per eight-atom unit cell of silicon as a function of the lattice parameter
for calculations with CASTEP and ONETEP.

proportionately. Throughout this section the values we report for these quantities correspond
to a lattice parameter of 5.43 Å.

In figure 6 we show CASTEP constant-NPW plots of the total energy per eight-atom cell as
a function of the lattice parameter for kinetic energy cut-offs which correspond to the ‘upper
bound’ (184 eV), ‘equivalent’ (283 eV) and ‘lower bound’ (551 eV) cases of figure 2. The
two ONETEP curves lie higher in energy than the CASTEP curves because the NGWF radii we
used were only 3.2 Å and the total energy is not yet completely converged with respect to
them. Nevertheless, the physical properties that we calculate are already converged to a very
satisfactory level.

By fitting the calculated energies as a function of the lattice parameter to the Birch–
Murnaghan equation of state [57] we obtained values for the lattice constants and bulk moduli
of crystalline silicon which we show in table 4. There is excellent agreement between the
ONETEP and CASTEP constant-NPW results at 283 eV. For the case of the infinite rcut the lattice
constants agree to 0.5% and the bulk moduli to 3.6% while for the case of the 9.5 Å rcut the
lattice constants agree to 0.8% and bulk moduli to 3.5%.

The bulk modulus is a quantity which is sensitive to calculation parameters and difficult
to converge. Even between the CASTEP calculations with the highest cut-off of 551 eV there
remains a difference of 0.7% between the bulk modulus values obtained with constant Ecut

and constant NPW while the lattice constant difference in this case is reduced to only 0.02%.

4.3. Biomolecules: breast cancer susceptibility proteins

Biomolecules are generally too large for conventional DFT calculations. Nevertheless, a
number of insightful studies have been carried out where a small fragment can be isolated
from the rest of the biomolecule [58, 59]. Obviously this approach cannot be applied in cases
where the interactions extend over a large area, e.g., the case of two large proteins bound to
each other. ONETEP can offer great advantages in the study of such molecules since it allows
one to perform calculations either on entire biomolecules or at least on segments large enough
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Table 4. Lattice constant and bulk modulus of perfect crystalline silicon as calculated by CASTEP,
ONETEP and experiment.

Kinetic energy Lattice constant Bulk modulus
Method cut-off (eV) (Å) (GPa)

CASTEP, constant Ecut 184 5.410 94.7
283 5.392 94.4
551 5.383 95.9

CASTEP, constant NPW 184 5.359 109.1
283 5.380 96.1
551 5.382 96.6

ONETEP, constant Npsinc, rcut = ∞ 283 5.406 99.6
ONETEP, constant Npsinc, rcut = 9.5 Å 283 5.421 99.5

Experiment 5.430 100.0

Glu 1548
Arg 250

Figure 7. 97-atom segment which includes the bonding interactions between the Arg 250–
Glu 1548 residues of the BRCA2-RAD51 complex. Left: stick model of the atomic structure.
Middle: isosurface of the electronic change density at a value of 0.02 e−/a3

0 from the ONETEP

calculation. Right: isosurface of the electronic charge density difference due to bonding at a value
of 0.00075 e−/a3

0 from the ONETEP calculation.

to contain the entire area of interaction. An example of the latter case is the RAD51–BRCA2
protein complex, for which we present preliminary results in this section.

The breast cancer susceptibility protein [60] BRCA2 regulates the function of RAD51,
an enzyme involved in DNA recombination. Crucial to this process is the specific interaction
between RAD51 and a BRC motif (sub-region) in BRCA2. There are eight slightly different
versions of the BRC motif in a single BRCA2 protein and each of these motifs can interact with
a RAD51 protein. Recently the structure of RAD51 bound to one of the BRC motifs (BRC4)
has been elucidated by high resolution x-ray diffraction, revealing in a qualitative manner the
nature of the interactions at the site of contact between the two proteins [61]. Amino acids with
both polar and hydrophobic side chains are involved in these interactions. With this crystal
structure as our starting point, we have used calculations with ONETEP to predict the strength
of the binding between the two proteins. The 988-atom protein segment we have studied
here (figure 8) consists of the entire BRC4 motif and only the A5 α-helix of the RAD51.
According to Pellegrini et al [61] the major bonding interaction between A5 and BRC4 is
a polar interaction involving hydrogen bonding between the side chains of arginine 250 of
A5 and glutamic acid 1548 of BRC4. We have first studied just this interaction in isolation
by cutting a very small 97-atom segment from the crystal structure of the proteins (figure 7)
which contains the relevant amino acids Arg 205 and Glu 1548. The two hydrogen bonds
between the cationic side chain of the arginine and the anionic chain of the glutamic acid of
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A5

BRC4

Figure 8. The 988-atom A5-BRC4 complex. Left: tertiary structure. Middle: stick model in
atomic detail with the side groups of Arg 250 and Glu 1548 shown in space-filling form. Right:
isosurface of the electronic charge density at a value of 0.02 e−/a3

0 from the ONETEP calculation.

the segment are depicted in figure 7. For this segment we were able to perform calculations
with both ONETEP and CASTEP. We have used norm-conserving pseudopotentials, plane wave
and psinc kinetic energy cut-offs of 608 eV, cubic simulation cells of 25 Å × 25 Å × 25 Å and
the Perdew–Burke–Ernzerhof (PBE) [62] exchange–correlation functional. The radii rloc of
the NGWF localization spheres were set to 3.2 Å for the hydrogen atoms and 3.6 Å for all
other atoms. The binding energies between these two fragments as calculated by CASTEP and
ONETEP are 2.78 and 2.79 eV respectively. Besides the excellent agreement between the two
codes it is worth observing that this binding energy is large in comparison to the energy of two
regular hydrogen bonds (which individually range from about 100 to 300 meV). It appears
that the bulk of the binding strength comes from the electrostatic interaction between the +1
charge of the arginine side group and the −1 charge of the carboxyl of the glutamic acid.
Indeed, the classical electrostatic energy of a system of two point charges of +1 and −1 atomic
units separated by the same distance as the centres of the side chains of these amino acids
is about 3.10 eV, which is rather close to the calculated binding energy. Calculations with
the NWChem code with the 6-31+G∗ Gaussian basis set and the PBE functional produced a
binding energy of 2.87 eV which after the counterpoise correction for BSSE became 2.82 eV,
in very good agreement with CASTEP and ONETEP given the level of accuracy that can be reached
with a Gaussian basis set of this quality (section 3).

For the BRC4-A5 complex of figure 8 the same calculation parameters as for the 97-atom
segment were used except for the orthorhombic 60 Å × 50 Å × 60 Å simulation cell. The
binding energy between the whole A5 helix and the BRC4 motif that we obtained from our
calculations with ONETEP is 5.67 eV. This is about twice as much as the binding energy of the
small segment of figure 7 and it shows that the remaining interactions between A5 and BRC4,
though small individually, cannot be neglected.

5. Conclusions

In comparison with two well established cubic-scaling density functional methods, we have
demonstrated that ONETEP can routinely achieve the highest levels of accuracy that are possible
with these methods. Amongst the factors that make this possible is the fact that in ONETEP

the calculated properties converge rapidly with the radii of the localization spheres of non-
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orthogonal generalized Wannier functions (NGWFs) and the rate of self-consistent convergence
is affected neither by the size of these regions nor the number of atoms. Next we have
demonstrated the wide applicability of the method by presenting exploratory calculations in
systems of about 1000 atoms from a wide variety of materials. We have studied semiconducting
and metallic nanotubes, crystalline silicon, and the complex of two bound proteins that can
play a role in the development of breast cancer. In all these cases we have managed to obtain
excellent agreement with CASTEP in comparing either smaller systems of the same material or,
where possible by the use of k-points, systems of equivalent size. These results confirm that
ONETEP is a robust, highly accurate linear-scaling density functional approach, which makes
possible a whole new level of large scale simulation in systems of interest to nanotechnology,
biophysics and condensed matter physics.
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